Optimization for Life

Fei Sun

November 2021

- I'm looking for collaborators.
- You don't need to agree with my philosophy.
- If you feels that some of the proposed directions are of interest to you, let's talk.

Disclaimer

- This is NOT a scientific presentation
- This presentation contains many
 - Hypothesises
 - Projections
 - Extrapolations

Outline

- What life do we optimize?
- Immortality is not a dream
- The next AI revolution
- A practical way to become the next NVIDIA
- Research directions

What Life Do We Optimize ?

Observation

- I can control myself only
 - I decide what to do for myself, though with external constraints
 - What to have for lunch?
 - What career to take?
 - Which company to work for?
- I can only inference others
 - If I hope others to do something, others have to agree for the benefit of themselves
 - Why do I want to inference others?
 - Optimize external constraints so I can achieve my decision better
- Then who is the most important person in the world?

Observation

- I can control myself only
 - I decide what to do for myself, though with external constraints
 - What to have for lunch?
 - What career to take?
 - Which company to work for?
- I can only inference others
 - If I hope others to do something, others have to agree for the benefit of themselves
 - Why do I want to inference others?
 - Optimize external constraints so I can achieve my decision better
- Then who is the most important person in the world?
 - Me

Optimize for Current Life

- Maximize your whole-life reward with your whole-life effort*:
 - $R = \max(\int_{t}^{T} f(t) dt)$ (1) • $E = \int_{t}^{T} \hat{f}(t) dt$ (2)
 - $E = \int_{t}^{T} \hat{f}(t) dt$ • $f(t') = \int_{0}^{t'} F(\hat{f}(t), t') dt$ (t' < T)
- t: current time
- T: current life
- f(t): immediate reward
- $\hat{f}(t)$: immediate effort
- Optimize self, e.g.
 - Pursue financial freedom (remove financial external constraint)

* The discussion assumes that humans are rational. It also contains reward hypothesis.

Optimize for Current Life and Legacy

- Spare some utilities to after-life legacy:
 - $R = \max(\int_t^T f(t) dt + \int_T^\infty g(t) dt)$ $E = \int_t^T \hat{f}(t) dt + \int_t^T \hat{g}(t) dt$ (3) (4)
 - $f(t') = \int_0^t F(\hat{f}(t), t') dt$ (t' < T)• $g(t') = \int_0^T G(\hat{g}(t)) dt$ (T < t')
- *t*: *current time*
- T: current life
- *f*(*t*): *immediate reward*
- $\hat{f}(t)$: immediate effort
- *g*(*t*): *immediate legacy reward*
- $\hat{g}(t)$: immediate legacy effort
- $\int_{t}^{T} g(t) dt$ is merged into $\int_{t}^{T} f(t) dt$

Optimize for Current Life and Legacy

- Spare some utilities to after-life legacy:
 - $R = \max(\int_t^T f(t) dt + \int_t^\infty g(t) dt)$ (3) (4)
 - $\mathbf{E} = \int_{t}^{T} \hat{f}(t) dt + \int_{t}^{T} \hat{g}(t) dt$
- Define: $\alpha = \int_t^T \hat{f}(t) dt$, $\beta = \int_t^T \hat{g}(t) dt$
- Free-will choices of α and β , e.g.
 - $\alpha > 0, \beta > 0$: care for offspring descendants are your legacy
 - $\alpha > 0, \beta > 0$: build long lasting artifacts future generations are your legacy
 - Founders of a nation, inventors, scientists
 - $\alpha > 0, \beta = 0$: degenerate to (2)
 - $\alpha = 0, \beta \gg 0$: martyr sacrifice for the better good of other people
 - $\alpha > 0, \beta < 0$: traitor willingly or unwillingly neglects legacy
- We no longer exist, why do we care about legacy?
 - There is no feedback to benefit self
 - Only belief and humanity for a greater population
 - But what is their relations to self?

Optimize for Current Life, Legacy, and After-Life

- Spare some utilities to after-life legacy:
 - $R = \max(\int_t^T f(t) dt + \int_T^\infty g(t) dt + \int_T^\infty h(t) dt)$
 - $\mathbf{E} = \int_t^T \hat{f}(t) dt + \int_t^T \hat{g}(t) dt + \int_t^T \hat{h}(t) dt$
 - $f(t') = \int_0^t F(\hat{f}(t), t') dt$ (t' < T)
 - $g(t') = \int_{0}^{T} G(\hat{g}(t)) dt$ (T < t')
 - $h(t') = \int_0^T H(\hat{h}(t)) dt$ (T < t')
- t: current time
- T: current life
- *f*(*t*): *immediate reward*
- $\hat{f}(t)$: immediate effort
- g(t): immediate legacy reward
- $\hat{g}(t)$: immediate legacy effort
- h(t): immediate after life reward
- $\hat{h}(t)$: immediate after life effort
- $\int_t^T g(t) dt$ is merged into $\int_t^T f(t) dt$

(5) (6)

Optimize for Current Life, Legacy, and After-Life

• Spare some utilities to after-life:

$$P R = \max(\int_t^T f(t) dt + \int_T^\infty g(t) dt + \int_T^\infty h(t) dt)$$

$$E = \int_t^T \hat{f}(t) dt + \int_t^T \hat{g}(t) dt + \int_t^T \hat{h}(t) dt$$
(5)
(6)

- $\mathbf{E} = \int_t^1 f(t) dt + \int_t^1 \hat{g}(t) dt + \int_t^1 h(t) dt$
- Define: $\alpha = \int_t^T \hat{f}(t) dt$, $\beta = \int_t^T \hat{g}(t) dt$, $\gamma = \int_t^T \hat{h}(t) dt$
- Free-will choices of α , β and γ , e.g.
 - $\gamma = 0$: atheist there is no after-life
 - $\gamma > 0$: Christian, Buddhist, etc. strong belief that after-life exist
 - $\alpha, \beta, \gamma > 0$: balanced perform actions for the purpose of better after-life
 - $\alpha, \beta \rightarrow 0, \gamma \gg 0$: ascetic sacrifice current life for better after-life
 - $\alpha = 0, \gamma \gg 0$: martyr (religious), e.g. fundamentalist.

•
$$\int_{t}^{T} \hat{f}(t) dt \Longrightarrow \int_{t}^{T} f(t) dt$$
, $\int_{t}^{T} \hat{g}(t) dt \Longrightarrow \int_{T}^{\infty} g(t) dt$
• They can be examined

- $\int_{t}^{T} \hat{h}(t) dt \implies ? \int_{T}^{\infty} h(t) dt$
 - It cannot be examined. It is only supported by belief. i.e. *H* may be zero.
 - If H > 0, the effort still benefits self, though not in the current life

Do You Spare More Effort On α , β , Or γ ?

•
$$R = \max(\int_t^T f(t) dt + \int_T^\infty g(t) dt + \int_T^\infty h(t) dt)$$
(5)
•
$$E = \int_t^T \hat{f}(t) dt + \int_t^T \hat{g}(t) dt + \int_t^T \hat{h}(t) dt$$
(6)

• Define:
$$\alpha = \int_t^T \hat{f}(t) dt$$
, $\beta = \int_t^T \hat{g}(t) dt$, $\gamma = \int_t^T \hat{h}(t) dt$

• Let's pause a moment...

Do You Spare More Effort On α , β , Or γ ?

•
$$R = \max(\int_t^T f(t) dt + \int_T^\infty g(t) dt + \int_T^\infty h(t) dt)$$
 (5)
•
$$E = \int_t^T \hat{f}(t) dt + \int_t^T \hat{g}(t) dt + \int_t^T \hat{h}(t) dt$$
 (6)

• Define:
$$\alpha = \int_t^T \hat{f}(t) dt$$
, $\beta = \int_t^T \hat{g}(t) dt$, $\gamma = \int_t^T \hat{h}(t) dt$

• Everyone in history must make a choice for α , β , and γ , consciously or unconsciously ...

Do We Spare More Effort On α , β , Or γ ?

•
$$R = \max(\int_{t}^{T} f(t) dt + \int_{T}^{\infty} g(t) dt + \int_{T}^{\infty} h(t) dt)$$
(5)
•
$$E = \int_{t}^{T} \hat{f}(t) dt + \int_{t}^{T} \hat{g}(t) dt + \int_{t}^{T} \hat{h}(t) dt$$
(6)

• Define:
$$\alpha = \int_t^T \hat{f}(t) dt$$
, $\beta = \int_t^T \hat{g}(t) dt$, $\gamma = \int_t^T \hat{h}(t) dt$

- Everyone in history must make a choice for α , β , and γ , consciously or unconsciously ...
- Until now...

It Is Time to Change The Equation

•
$$R = \infty$$
 (5)
• $E = \lim_{T \to \infty} \int_{t}^{T} \hat{f}(t) dt$ (6)

- Why now?
- How?

Immortality is not a dream

Let's walk through my thinking process

The Seven Stages of Evolution*

S0: Behavior indifferent to environment, evolution indifferent to environment

S1: Behavior indifferent to environment, evolution reactive to environment -> virus, some plants

S2: Behavior reactive to environment, evolution reactive to environment -> animals

S3: Behavior proactive to environment, evolution reactive to environment -> humans

S4: Behavior proactive to environment, evolution proactive to environment

S5: Behavior proactive to environment, evolution is morphed to self-evolution

S6: Behavior controls the environment, life is eternal

S7: Behavior is the environment

• S4 may take a long time... there is no chance for me to see later stages.... but something changed...

* Some scribble of things https://feisun.org/2017/12/24/some-scribble-of-things/ Let's ask ourselves this question: Why we have not found extraterrestrial life?

Fermi Paradox*

- There are <u>billions</u> of stars in the <u>Milky Way</u> similar to the <u>Sun</u>.^{[3][4]}
- With high probability, some of these stars have Earth-like planets in a circumstellar habitable zone.^[5]
- Many of these stars, and hence their planets, are much older than the Sun.^{[6][7]} If the Earth is typical, some may have developed <u>intelligent</u> life long ago.
- Some of these <u>civilizations</u> may have developed <u>interstellar travel</u>, a step humans are investigating now.
- Even at the slow pace of currently envisioned interstellar travel, the Milky Way galaxy could be completely traversed in a few million years.^[8]
- And since many of the stars similar to the <u>Sun</u> are billions of years older, Earth should have already been visited by extraterrestrial civilizations, or at least their probes.^[9]
- However, there is no convincing evidence that this has happened.^[8]

* https://en.wikipedia.org/wiki/Fermi_paradox

Von Neumann Probe / Bracewell Probe

- Self-replicating probes could exhaustively explore a galaxy the size of the <u>Milky Way</u> in as little as a million years.^{*}
- Why we haven't seen them?

* https://en.wikipedia.org/wiki/Fermi_paradox

Drake Equation*

$$N = R_* * f_p * n_e * f_l * f_i * f_c * L$$

where:

N = the number of <u>civilizations</u> in our galaxy with which communication might be possible (i.e. which are on our current past <u>light cone</u>); and

 R_* = the average rate of <u>star formation</u> in <u>our Galaxy</u>

 f_{p} = the fraction of those stars that have <u>planets</u>

 \dot{n}_{e} = the average number of planets that can potentially support <u>life</u> per star that has planets

 $f_{\rm I}$ = the fraction of planets that could support life that actually develop life at some point

 f_i = the fraction of planets with life that actually go on to develop <u>intelligent</u> life (civilizations)

 $f_{\rm c}$ = the fraction of civilizations that develop a technology that releases detectable signs of their existence into space

L = the length of time for which such civilizations release detectable signals into space $\frac{1511}{1000}$

"Where Is Everybody?"

- Earth hosts the only life in the universe.
 - We'd better all be Christians
- Dark forest theory
 - People develop such gene based on evidence.
 - But why we haven't seen any evidence of interstellar battles?
- Dark domain (黑域)
 - Do we have evidence of dark domain?
 - It is stage 5, not stage 4

The Universal Model of Evolution*

- Stage 4 is the stage to explore the universe
 - Be forced to explore
- But we have not seen any, why?

* Some scribble of things https://feisun.org/2017/12/24/some-scribble-of-things/

Because: Stage 4 may be short

- Path 1: Most civilizations end at stage 4
 - Stage 4 is the MOST dangerous stage
 - World is ended before exploring the universe
- Path 2: People evolve to stage 5 very fast
 - Technology advances exponentially
 - Once we reach stage 5, we are immortal...
 - Once we reach stage 5, we don't want to be detected...
- We only explore the universe in stage 4, but it is short
 - That's the reason that we do not see any extraterrestrial life

永生的阶梯 - 刘慈欣

如果我说,有史以来的所有人基本上都是平等的一一是有史以来,不是法国大革命以后。你 有什么感觉?如果大部分人觉得荒谬,那是因为他们还没有见过更大的不平等,或者说,还没 有出现这样不平等的技术条件。

你在人生的平原上走着走着,迎面遇到一堵墙,这墙向上无限高,向下无限深,向左边和右 边都无限长。这墙是什么应该不难猜到。在过去的时代,平民可能走三四十年就遇到这堵墙, 帝王和贵族可能走出七八十年才遇到,但他们之间相差一般不会超过五十年,如后面所述, 这个差别微不足道。所有人在相差不到一个数量级的时间里遇到这堵墙,这是最大的平等, 这堵墙就是上帝或大自然为人类社会设置的平等的底线。

但随着技术的发展,有些人前面的死亡之墙要被拆掉了,人生的平原对于他们将无限广阔。

But this is just a science fiction... is it so?

Immortality May Be Possible

- We may be possible to see immortality in our lifetime!
 - It may suffer from the "overconfidence effect".*
- Will stage 4 be so short that it does not exist?
 - I don't know
 - If it takes a long time, it doesn't matter to ME.
- Where should I spend my effort?

$$R = \max(\int_{t}^{T} f(t) dt + \int_{T}^{\infty} g(t) dt + \int_{T}^{\infty} h(t) dt)$$
$$E = \int_{t}^{T} \hat{f}(t) dt + \int_{t}^{T} \hat{g}(t) dt + \int_{t}^{T} \hat{h}(t) dt$$

$$R = \infty$$
$$E = \lim_{T \to \infty} \int_{t}^{T} \hat{f}(t) dt$$

Or

* https://en.wikipedia.org/wiki/Overconfidence_effect

I am selfish

- If this is possible, we will see the greatest inequality in history.
- I don't want to be at the sideline.
- I want to make it possible. I want to speed it up.
- And enjoy the benefit of creating it.

永生阶梯第一级

- 永生阶梯的第一级就是活过五十年。
- Technology advances exponentially in the next 50 years so that the later stages become possible.
 - Direct technology is life science
- How can we help to speed up the process?
 - Start from what we can do

Let's design an AGI to work on the rest!

This is my real reason to work on AGI

The Next AI Revolution

Previous Works on AGI

- 自上而下思考实现AGI技术难点及可能方法
- 稀疏是通往AGI的必由之路
- •AGI,从我做起
- This time we talk about something different

Current Mainstream DL is Going Downhill

- Foundation model has swept through all DNN fields
 - Many cheer on the success
- However, it requires too much data, too much compute power
 - Its future potential is limited. It cannot lead us to AGI
 - Coz nobody can afford such expansion
- If we target AGI, we need to find another way.

The Hype Cycle for the Third AI Wave

The Hype Cycle for the Fourth AI Wave

The Fourth AI wave

- Abstract symbolic layer neurosymbolic computing
- Control flow model
- Revolutionized reinforcement learning
 - Apply DNN based control flow

We Need to Raise the Abstraction Layer

- The existing DNNs mix low level features with the high level methods
 - Features are data dependent
 - Methods are data independent
- Insert an abstraction layer to decouple features and methods
- -> Insert a symbolic layer
- -> Neurosymbolic Al
 - Combine connectionist AI and symbolic AI
 - Getting more attention since 2020
- Composition is built-in

One View of Neurosymbolic Al

- Connectionist AI extracts features and abstract to symbols
- Connectionist AI conclude methods from symbols

Control Flow Model

```
We want to do this:
```

```
if (a < 0) {
    for (i = 0; i < 100; i++) {
        x[i] = 0
    }
}</pre>
```

We actually do this in data flow model

```
for (i = 0; i < 100; i++) { // unroll, each element is done separately
    // one layer (one activation cannot directly influence another activation)
    y[i] = x[i] + 1000 * a. // (| 1000 * a | >> |x[i]|)
    z[i] = -x[i] + 1000 * a
    // second layer ReLu
    if (y[i] < 0) { y[i] = 0 }
    if (z[i] < 0) { z[i] = 0 }
    // third layer
    xx[i] = y[i] - z[i]
}</pre>
```

Control Flow Model

We want to do this:

independently)

```
if (a < 0) {
  for (i = 0; i < 100; i++) {
     x[i] = 0
```

We actually do this in data flow model

```
for (i = 0; i < 100; i++) { // unroll, each element is done separately
                                                   // one layer (one activation cannot directly influence another activation)
                                                   y[i] = x[i] + 1000 * a. // (| 1000 * a | >> |x[i]|)
                                                   z[i] = -x[i] + 1000 * a
                                                   // second layer ReLu
                                                   if (y_i^{(i)} \circ 0) \{ y_i^{(i)} = 0 \}
                                                     ___[i] < 0) { z[i] = 0 }</pre>
                                                   // third layer
                                                      [i] = y[i] - z[i]
• Very inefficient (each element is learned
     • Result to large models
   Difficult to understand (decisions are
   carried out at micro level)
     • Result to interpretation difficulties
```

Control Flow Model

We want to do this:

independently)

```
if (a < 0) {
  for (i = 0; i < 100; i++) {
     x[i] = 0
```

• Result to large models

carried out at micro level)

We actually do this in data flow model

```
for (i = 0; i < 100; i++) { // unroll, each element is done separately
                                                 // one layer (one activation cannot directly influence another activation)
                                                 y[i] = x[i] + 1000 * a. // (| 1000 * a | >> |x[i]|)
                                                z[i] = -x[i] + 1000 * a
                                                // second layer ReLu
                                                 if (y_i^{(i)} \circ 0) \{ y_i^{(i)} = 0 \}
                                                   { z[i] < 0) { z[i] = 0 }
                                                // third layer
                                                    i] = y[i] - z[i]
                                                                                  How to design a control flow module to
                                                                                    Reduce the model size
• Very inefficient (each element is learned
                                                                                    Better explanation
  Difficult to understand (decisions are
                                                                                 Challenges
                                                                                   How does back propagation work?
                                                                                    What about training stability?
     • Result to interpretation difficulties
```

Trade Time for Space

- May we find a small model, looping inputs many times, and get results of the same quality as the big models?
- Requires
 - Memory Control flow ALU ALU ALU Controller Symbolic abstraction features inputs Memory Symbolic layer outputs

Next Generation of Reinforcement Learning

- AI needs to explore via deep reinforcement learning
 - DNN generates heat map
 - Sample actions based on importance
 - RL performs playout
 - Predict the future
- Issues of RL
 - Has fixed actions and fixed states
 - Has a large branching factor
 - Has a local view of the actions
- What's next?
 - Global view, built-in composition
 - DNN generates heat map from control flow

An analogy of DNN to VLSI

	DNN	VLSI
Stage 1	A feedforward network with a single layer is sufficient to represent any function	All combination logic can be represented as two level AND/OR gates
Stage 2	Deeper networks generalize better. (what about complexity? Any theory support?)	Apply multi-level logic optimization to reduce complexity, supported by Boolean algebra
Stage 3	Softmax (one hot, with prior knowledge) or embedding to coalesce values to finite possibilities. Abstraction? Maybe symbolic layer	Analog -> digital. Coalesce unlimited analog signals to finite possibilities (0/1). Clean abstraction. Analog: physics, digital: Boolean logic
Stage 4	Recurrent neural network: Unroll the network in each time step. Perform the same computation in each time step. (Training complexity increases linearly with time steps)	Sequential logic: outputs depend on current and past inputs Finite state machines: backward edge perform different computation each cycle
Stage 5	DNN is purely data flow	Software directs FSM transition (control flow), producing limitless possibilities

An analogy of DNN to VLSI

Tł

•

		DNN		VLSI
	Stage 1	A feedforward network with a single layer is sufficient to represent any function		All combination logic can be represented as two level AND/OR gates
	Stage 2	Deeper networks generalize better. (what about complexity? Any theory support?)		Apply multi-level logic optimization to reduce complexity, supported by Boolean algebra
nis i	Stage 3 s where all t	Softmax (one hot, with prior or embedding to coalesce val the magic happens	knowledge) lues to finite ybe	Analog -> digital. Coalesce unlimited analog signals to finite possibilities (0/1). Clean abstraction. Analog: physics, digital: Boolean logic
We are not "approximating" a function. We cannot fully control the outcome. This is the most "rewarding" and most "dangerous" step.		roll the rform the ne step. s linearly	Sequential logic: outputs depend on current and past inputs Finite state machines: backward edge perform different computation each cycle	
	Stage 5	DNN is purely data flow		Software directs FSM transition (control flow), producing limitless possibilities

The Fourth AI wave

- Abstract symbolic layer neurosymbolic computing
- Control flow model
- Revolutionized reinforcement learning
 - Apply DNN based control flow
- Application wise
 - Robotics

A Practical Way to Become the Next NVIDIA

The Unfortunate Truth

- Let's face it. NVIDIA is a giant
- It is unrealistic to hope to build a 10x faster hardware to beat NVIDIA on DNN
- GPU is a good general architecture, suitable for workloads that are
 - Data intensive
 - High fine-grained parallelism
 - High throughput
 - Latency insensitive

A More Practical Way

- Old markets dry up, new markets emerge.
- Let's search a new market
- NVIDIA: 2000, 2012
- ARM: 1996

A More Practical Way

- Find a new market that hit GPU's pain point
 - Control intensive
 - High middle-grained parallelism
 - Latency sensitive
 - High throughput
- Which market?

The Fourth AI Wave

- Abstract symbolic layer neurosymbolic computing
 - Requirement of compute on data is not as high
- Control flow model
 - Single batch training much less fine-grained parallelism
 - Memory short sequence of random access
 - Control/data interaction data depends on control, latency sensitive
 - Resource requirement is very high for high latency workload
 - Activation sparsity
- Revolutionized reinforcement learning
 - Enhance RL with DNN based control flow
 - Models will be executed lots of times compute requirement is high (in a different sense)

GPU is terrible for these workloads

But wait... There is still Intel/AMD

- CPU is good for workloads that are
 - Control intensive
 - Coarse-grained parallelism
 - Latency sensitive
- But CPU has
 - High context switch cost
 - Too big cores
 - Compute capacity is low
 - Synchronous architecture

A New Architecture Will Arise

- With new workload, there is a middle ground between CPU and GPU
 - This is the next big opportunity

A New Architecture Will Arise

- With new workload, there is a middle ground between CPU and GPU
 - This is the next big opportunity
- However, we need to first make sure the market is real
- So we need to first work on the algorithm part...

Research Directions

New Model Architecture Exploration

- DNN: output is inputs' linear combination
- CNN: take advantage of prior knowledge and locality
- Self-attention: output is inputs' pair-wise weighted linear combination
- How to reduce prior knowledge?
 - Research on parameter sharing and sparsity
- Think beyond linear combination?

Symbolic Layer

- Symbolic layer is for multi-tasking model
 - Symbols are just embeddings for multiple tasks
- Start from connectionist AI and organically grow the symbols
- Use DNN to extract features, abstract the symbolics, and apply DNN on the symbols
 - All done in training, no prior knowledge applied.

Memory

- Dual purposes:
 - An upgrade of RNN
 - More complex logic between time steps
 - Decouple knowledge and methods
 - Symbolic layer
 - Multi-task model handling
- Approach: start from programs we know about (NTM, DNC, etc.)
 - Impose prior knowledge first and gradually relax the requirement.

Control Flow

- Activation sparsity
- More complex control logic
 - More than just single layer MLP. Beyond MOE.
- Feedback loop
 - With memory

Reinforcement Learning

- Familiar with existing reinforcement learning first
 - Identify tough tasks existing solutions fail
- Based on previous researches, apply new findings to reinforcement learning
- E.g. the issue for deep learning + MCTS is that the branching factor is too large.
 - This is a very local view of the actions.
 - Need to increase the steps for the actions, and then decompose the actions to finer grained steps.
 - Do this organically and dynamically without prior knowledge

But... Where is the Hardware?

- Hardware architecture research follows closely after algorithm breakthroughs
 - Research on algorithm and hardware are pipelined.
 - They require different skills but can work closely together.
- Closely innovate in hardware together with algorithm.
- This gives us 3-4 years lead time for the new hardware to enter market.
 - This is our **best** opportunity to beat NVIDIA/Intel

Research Approaches

- Option 1: Fast paced iterations on key technologies
 - Pros: technology first, no redundant work, progress fast, small team. May produce dozens of top conference papers.
 - Cons: need extra work to land technology to real applications.
- Options 2: Conquer a few high impact domains with new technology
 - Pros: Better visibility, practical use cases. May produce several nature/science level papers.
 - Cons: Only a small percentage of effort targets new technology. Progress slower. Teams may be bigger. The technology have the risk of being addressed by others.

Conclusion

- I've talked about my real research objective.
- I've identified the breakthroughs that will lead to the next AI revolution
- I've outlined current research directions that will lead to the breakthroughs

- I'm looking to build a small team with complementing skills and share the same goal.
 - DNN model architecture design.
 - Reinforcement learning.
 - ML theory.
 - Computer architecture.
- We dash towards the goal.
- I don't want to cover all aspects, and I cannot.
- But before I find the team, I will try to understand the stake holding directions and consult the rest.

- If you don't share the same goal and don't agree with my philosophy:
- I'm looking for collaborators.
- If you feels that some of the proposed directions are of interest to you, let's talk.

- If you have counter arguments to my story:
- Let's have a constructive chat.
 - To help me understand different opinions and improve my thinking.

梦想还是要有的,万一实现了呢? 一群有情有义的人,在一起做一件有价值意义的事 此时此刻,非我莫属 Will you join the venture?